
1

A Health Care Claims Data Mart: Construction and Exploitation
Marge Scerbo, CHPDM, University of Maryland Baltimore County

Stuart B. Levine, SAS Institute Inc.

Abstract

Health care claims data are complicated animals. The
eccentricities of this data include differences in the types
of claims files and the services which populate those files,
variations in the type of providers who service the
population and the information needed about each type of
provider, and finally, the actual populations of health care
recipients and all of their individual specifications.

Being able to sort through all of this data (and there is
usually a lot of it!) and answers queries from insurers,
providers, analysts, etc., and other people within your
organization can be a real challenge. In the past, the
solution was to have people submit requests for one or
more programmers to extract data and run analyses. The
problem was twofold: programmers were overwhelmed
with requests, and worse, the data and/or analyses
requested were not the correct solution to the problem.

This paper will highlight how this challenge was met
through the development of a Data Mart. This includes
the steps taken in the design of the Mart, its base tables
and MDDBs (MultiDimensional DataBase), the definition of
SAS/EIS objects that can exploit MDDBs, and other
specific customizations that were developed to allow one
organization, the UMBC Center for Health Program
Development and Management (CHPDM), to address
these data access issues.

Introduction

Like any health care organization, CHPDM has a number
of people looking for different kinds of information at any
given time. And, like other organizations, the usual
method of getting that information was for a user to submit
a request to a programmer to extract that data and format
into a readable report. In the spring of 1997, CHPDM
decided to simplify and automate this process by
developing a Data Mart to contain this data and give these
users access to this data. This would allow analysts to
find their own answers without having to wait on the
backlog of programming requests.

A team of people was put together with staff from UMBC,
SAS Institute, and Price Waterhouse. Each of these
groups came to the project with different strengths. The
team worked well together from early in the project,
quickly defining the roles of each group and each team
member. This partnership between the three entities
involved helped (and was essential) in making the project
a success. And, the result was a Data Mart application
that has been well-received by the users, both in the data
they now can access that they could never see before and
in the functionality that allows them to see the data in
ways they never thought they could see.

Conceptual Design

The team of Price Waterhouse, SAS Institute and CHPDM
managers and analysts assembled for several weeks to
begin the design process. As with any data mart or data
warehouse project, the most time consuming process is
that of design. The first step in the process was for the
team to get acquainted. Each member of the group had
particular strengths and weaknesses. Each would add
something slightly different to the thought process. And
each would learn something from the other members.
Since the design process covered a large range of topics
and several months in time, leadership of each meeting
rotated among the members of the team, depending on
the topic and whose specialty this fell within. It would have
been an interesting process to observe!

The first several meetings allowed the group to set
priorities, review timetables and arrange schedules, lay
out the steps in the process, and define the general
outcomes desired. Of course, as the project moved
forward and was better understood, each of these
specifics changed. Timetables were amended, priorities
reinterpreted, steps shuffled, and outcomes clarified.
Throughout this initial process and every subsequent one,
it became imperative to maintain management support
and direction.

Certain issues were assessed as ‘givens’. The data for the
data mart would be stored on a Sun Solaris system.
Although all the data were stored in SAS data set format,
the format of the Data Mart was yet to be determined.
Confidentiality and security were imperative; Maryland
Medicaid data contain very confidential material. The data
mart would encompass one year of claims and eligibility
data; this would be for fiscal year 1995. Each CHPDM
staff member had an individual PC attached to a Novell
network. No new hardware purchases were planned.

One of the first steps was for the non-CHPDM team
members to become acquainted with the file that was to
be the basis of the Data Mart. CHPDM documentation
was studied. An intense database review was undertaken
which included studies of the data validation process and
business rule definition. The Maryland Medicaid claims
and eligibility files had been verified, validated, cleansed,
and sorted, and all data were stored in SAS data sets.
Some business rules, which should include clear
definitions of field creation and usage approved by
manager or director, already existed. The team was able
to make use of these previously accomplished steps.

In order to ‘involve’ the entire department, interviews were
arranged with the different entities in the department. The
department was made up of several different analysis
groups, each with their own set of skills and needs. Each
entity had separate issues that they felt were imperative to
their future studies and outcomes. Also, each group had a

2

different grasp of what data were available, how to
manipulate this data, and what information could be
extracted from this data. The team developed a list of
questions to pose to each group; using a predefined set of
questions made it easier to compile the information
collected. Different members of the team attended the
various interviews, although 1 or 2 members did attend all
the interviews to add an overall view.

After the interviews were compiled, the team reviewed the
responses, categorized answers, established priorities,
and prepared a formal document. This contained those
requests that could be met with the present data, analysts,
hardware and time limitations. Defining and refining
requirements vs. enhancements, needs vs. wants, and
possible vs. impossible was a tough task, but a necessary
one.

Once the final interview document was created, the
programmers and analysts on the team created a
prototype of the proposed system. The team from SAS
Institute, Price Waterhouse and CHPDM discussed
storage options and the mechanics of such. It was a
general agreement that the final information to be
displayed to the users was best stored as MDDBs. An
MDDB is a MultiDimensional DataBase and was, at the
time, a new storage mechanism offered by SAS Institute.
A lengthy discussion of MDDBs and the SAS/EIS front end
will be discussed later in the paper.

A JAD (Joint Application Design) session was held. This
meeting called together all those who had taken part in the
interviews. This full day session provided the opportunity
to present to the group the outcome document from the
interviews as well as the prototype of the system. At this
point, users were able to see the different methods of
displaying the data that were available. The users were
shown maps, graphs and the multidimensional table. This
table, a ‘MultiDim’, received the most positive responses
and therefore was given the highest priority in creation. In
this group setting, the team and the CHPDM staff were
able to discuss the outcome and make changes as
necessary. Also covered at the meeting were those
requests that could not be fulfilled in this phase of the Data
Mart and the reasons for these omissions. It proved to be
a positive experience for the entire group.

Price Waterhouse took the lead in developing Critical
Success Factors for the project. This involved several
days of discussion, interpretation, debate, etc. with the
entire team. These CSFs allowed the team to focus on
the conditions that will deem the project a success from a
business standpoint rather than a technical one.
Examples would be:
• ‘Reduce need for specialized computer programs to

run analysis reports.’
• ‘Reduce time from days to immediate access to data.’
• ‘Allow ad-hoc reporting capabilities for general use.’

Database Design

Once the conceptual design issues were at least in part
finalized, the team was able to move on to the actual
design of the data structures. This meant designing the

MDDBs and their underlying base tables. To understand
this process, it was important for each member of the
team to have a grasp of what a multidimensional table is
and how SAS software creates this structure. SAS
provided support from both the consulting organization
and the development team.

Underlying each MDDB is a base or detail table, a SAS
data set or data view. The design of these tables proved to
be incredibly time-consuming. Although the claims data
which was made available to the Data Mart had been
cleansed, sorted, verified, and validated, no one claims file
could stand on its own as a detail table. Medicaid data, as
with most health care data, is often analyzed by recipient.
Studies are run analyzing a group of recipients by race,
gender, location, age, etc. In order to provide this ability,
each record would need to contain information about the
particular recipient receiving the service. After the team
studied the various aspects of recipient values, up to 16
variables were ‘attached’ to each record in a detail table.

It was ascertained that many of the claims files did not
stand on their own as study elements. Many of the files
had to be merged, summarized, sorted and rebuilt to
satisfy analysis needs. For example, diagnostic studies
lead the list of priorities. Diagnosis codes, ICD-9 codes,
existed in the Inpatient, Outpatient, and Physician files.
Therefore, these files had to be merged, counted and
summarized by diagnosis code, and then the recipient
level information added to each record. The final product
were two SAS data sets, each with over 5 million records
each. One data set held information on diagnostic counts
per recipient and another held monetary amounts for each
primary diagnosis. The process seems straightforward
now but took many hours and days of design discussions
(and disagreements!).

In the end, the Data Mart contained 11 detail tables with
11 MDDBs sitting on top of them. These 11 detail tables
would provide the basis for studies by diagnosis codes,
physician procedures, surgical procedures, home health
studies, pharmaceutical therapeutic classes, and a large
number of recipient based usage and costing across a
year. As each detail table was created, the team moved
forward to design MDDBs.

An MDDB creates storage for data in a summarized
format that provides fast and easy access. The use of a
multidimensional database gives the user multiple lines of
access, ’dimensions’, to the data and summarization by
each of these dimensions. An MDDB can be viewed as a
cube with multiple dimensions: a series of cubes creating
one large cube. It would allow the users to interpret the
data from any one of these dimensions or cubes. This
design methodology stores aggregates at each
dimensional crossing, called a cell. A ‘cell’ is a unique
combination of each dimension’s level (across and down)
and will contain the summary value for that crossing.
Below is an image depicting an MDDB:

3

The MDDBs’ ability to examine large amounts of data with
great speed was dependent on the structure of the MDDB.
The speed is due in part to the technical design of the
MDDB. The SAS/MDDB Server product contains fast
indexes to each subtable as well as to the detail level
data. And speed is also accomplished by presenting
users with summary level data, rather than all the records
that created the summary. Rarely do end users need to
look at all data for the entire population; usually views of
summarized data which can be subset and/or drilled down
are much more useful.

So MDDBs provided inherent speed by their internal
structure. But, speed of access is also dependent on the
PROC MDDB code used in the MDDB creation. An MDDB
is built similar to a summary table in base SAS. The SAS
programmer will name CLASS variables which serve as
categorical fields and analysis (VAR) variables which are
the fields to be used in calculations. CLASS variables
usually have a discrete and definable number of values.
These fields allow for identification of specific categories
and provide a means to subset the data. Analysis
variables are numeric fields that can be summarized,
averaged, etc. When SAS executes PROC MDDB, an
NWAY table is created. The NWAY table is a table that
crosses all class variables. In the CHPDM Data Mart,
there were between 15 and 20 class variables identified
for each MDDB and between 1 and 20 analysis variables.
Crossing that many class variables with one another
created very large NWAY tables.

As the team learned by trial and error, the speed of access
would also be greatly affected by the number of
hierarchies that were defined. A hierarchy is a subtable
that allows for quicker and easier access to the
summarized data stored at that particular level.
Hierarchies can also be called subtables or dimensions.
Certain hierarchies can be drilldown; these hierarchies
provide a method to look deeper into the information. For
example, a drilldown path could be from county to zip
code. The team therefore included in the design these
drilldown hierarchies as well as non-display hierarchies.
These subtables which are not ‘drillable’ provide a quick
mechanism to access the data. If it were not for these
subtables, each query into the data would require access
of the NWAY table, a very large table! Deciding which

subtables might be accessed by the users was actually a
best-guess estimate of what the team felt might be useful.
In order to provide a method to study the subtable use, a
tracking system was designed within the front-end
application and will be discussed later in the paper.

The actual database design process was a very iterative
experience for the team. Often after a long design session,
the team would let the dust clear (and their minds), and
meet later to review what had been proposed and what
would work and not work. This step was intense, difficult,
stressful, but also gave the team a great feeling of
accomplishment to complete.

Construction

At some point in the process, the team decided to make
use of another new product from SAS Institute,
SAS/Warehouse Administrator. This product would
provide a means of organizing all the data that would
underlie the data mart. The Warehouse Administrator
would allow the team to create metadata, the basis for any
data mart or data warehouse. Since it was such a new
product, it was a learning experience for the entire team.
SAS Institute provided a specialist for a full week to teach
members of the team how to use the software.

After defining libraries where the data sets could be found
and the MDDBs and detail tables would be stored, the
next step in the Warehouse Administrator project was to
define all the ODDs in the system. An ODD is an
Operational Data Definition. This could be a SAS data set,
data view or database table accessed by SAS. The
Warehouse Administrator provides a simple mechanism to
point to one of these files to ‘register’ the ODD. The
definition of the ODD becomes a portion of the metadata
underlying a Data Mart or data warehouse.

The team decided to define three groups of ODDs:
Claims, Eligibility and Summary. Each of these groups
contained between 1 and 10 separate data sets that
presently existed in the system. Several new data sets
were defined which would underlie the entire system. Most
important was a recipient file that would contain all the
identifying fields for each individual. At the same time, the
true Medicaid identification numbers were replaced with
specially encoded ids, this to add an important level of
security and confidentiality. Below is an example of an
ODD from the Data Mart:

4

After the team defined the ODDs, the metadata could now
be used to build the detail tables and MDDBs. Each detail
table/MDDB became a separate subject area. By creating
a subject area, the detail table can be defined by pointing
to the various ODDs that provide all or portions of the
data. Additionally, the manipulation and management of
this data can be added as separate processes, either
Mapping or Loading. This allows the program or programs
that are used in the creation of the detail table to be stored
in a specified source catalog. Each entry in the source
catalog can be accessed through the load step. The
Warehouse Administration therefore served as its own
documenter. A source code entry could be clearly mapped
to a particular subject area/detail table. Below is a display
of the 11 subject areas developed by the Data Mart team.

The next step in the process was to create the MDDBs.
Since the detail tables were now created, this was not too
difficult. Or–should not have been too difficult. At first, the
team used the Warehouse Administrator code generator
for the MDDB procedure. Following the process, a
Summary Group was defined. From that definition, the
MDDB was generated. Unfortunately, the Warehouse
Administrator code generator attempted to cross every
possible class field and combination thereof, with every
other class field and combination thereof. The first attempt
with an MDDB containing 16 class fields generated
500,000 lines of code. The compilation of this code was
cancelled after several hours. Additional code generators
were tested, but the results were similar. In the end, one
team member simply typed in manually the PROC MDDB
statement, which included about 100 hierarchy
statements. This in fact turned out to be the most efficient
method.

When executed, PROC MDDB code first creates a large
NWAY table. This caused problems in memory usage until
SAS Update 045, along with a new Solaris version, was
placed on the Unix machine. The Warehouse
Administrator allowed the team to make use of the Unix
scheduling system; it was clear that MDDBs should be
created at off-peak hours. The creation of a large MDDB
could slow the system to a crawl.

The Warehouse Administrator did provide a clear
graphical outline of what files/ODDs created the detail file
that in turn created the MDDB. These displays made it
visually clear as to what metadata formed the backbone of

a subject area. Below is a copy of one of these displays
which shows which files created the Diagnostic Counts
MDDB.

Exploiting the MDDBs

Giving users access to the data in the Data Mart
presented a different set of challenges. The first step in
the process was to work with the users to select which EIS
objects best suited their needs. In Version 6.12, there are
5 objects that can be used to display information stored in
an MDDB. Three of these are being used within this
application, the Multi-Dimensional Report (MDR), the 3D
Business Graph, and the Map. Below are examples of
each of these reporting objects:

5

Before defining these EIS reporting objects, the MDDBs
had to be registered. This process identifies the MDDBs
to EIS and makes them available for the objects.
Registering data structures within EIS is a task that must
be performed whether using MDDBs or standard SAS
data sets. The difference is that registering MDDBs is a
much simpler task. Since the MDDB may already contain
the drill hierarchies, therefore they do not have to be
defined within the registration. If one were to register a
data set in EIS for use in a Multi-Dim Report where
drilldown was needed, each drill hierarchy would have to
be created individually. But with an MDDB, registration is
a few simple mouse clicks.

Besides these ‘usual’ tasks of defining EIS objects to
display the MDDBs to the users, a method had to be
developed to provide access to the EIS report objects,
some unique customizations to those reports, and
additional functionality.

Users had to be able to choose from among the eleven
MDDBs that are currently part of the Data Mart. Rather
than create a new window for each selection, a menu was
developed from generic classes and windows. This menu
was to be a data-driven system, so addition of new reports
to the system would be as easy as defining the new
report. Adding access to that report would be
accomplished by adding a new observation to the data set
used to populate the menu. The image below is the
primary menu screen:

To view any of the reporting objects, the user selects one
of the icons on the menu screen, scrolling to find their
selection if necessary. The initial selection changes the
WHERE clause on the menu data set, then re-displays the
menu showing a sub-menu, allowing the user to choose
between the Multi-Dim Report, Graph, or Map:

The next challenge was to allow users to subset the data
in the MDDBs based on specific criteria. Some objects by
default included a subset mechanism. There are methods
in the EMDDB_M class such as _ADD_SUBSET_ and
_UPDATE_ALL_SUBSETS_ that allow subset criteria to
be passed to an MDDB prior to displaying a report.
However, these methods assume that the subsetting is
being done on class variables. The requirement was to
provide the ability to subset the MDDBs on non-dimension
variables (variables that are not on the CLASS statement
of the MDDB procedure).

Additionally, much of the data were stored in codes. For
example diagnoses are stored as ICD-9 diagnosis codes.
Users needed the ability to search within in the codes and
the descriptions of these codes.

Before discussing how giving users subsetting capabilities
was done, some information on the class mentioned
above. The EMDDB_M class is a non-visual class giving
the user the ability to navigate through the defined data
hierarchies of an MDDB, drill down, reach-through,
subsetting, and report modifications "on the fly". This
class, which is a model class, is used by the viewer
classes (Multi-Dimensional Report, 3-D Business Graph,
etc.).

Instructions can be sent to any of these classes by calling
methods that are defined for the class. Examples are the
two methods mentioned above, which affect the model
class (EMDDB_M) when they are called. The viewer
classes also have methods that can affect the display of
the class or report,

To meet this technical challenge, a custom FRAME entry
was developed to give the users a way to define their
subset criteria. Because each MDDB could require
different variables to use for subsetting, this entry would
also have to be data-driven. The user had to be able to
select an appropriate to subset on, then enter or select

6

values of the selected variable. This subset could be a
single value or a list of values of the selected variable. The
ability to subset by multiple fields was also a requirement.

Additionally, users needed the ability to display the subset
criteria, the ‘where clause’, which was created and to save
and retrieve these where clauses to be used at another
time. To accomplish this task, the following FRAME entry
was developed:

This screen provides the user the ability to generate a
where clause. However, an MDDB cannot be subset on
non-dimension variables. In actuality, the permanent
MDDB is not being subset. The where clause built by the
user is passed into a macro variable, which is in turn used
in an MDDB procedure call. This PROC MDDB code is
the exact same code used to create the primary MDDBs in
the Data Mart with a where clause placed on the input
data set.

First, this version of the procedure includes the where
clause built by the user on the subsetting screen. Second,
the new MDDB does not replace the existing one; rather, it
creates it as a temporary MDDB. Methods have been
written to determine if the where clause exists and if so, to
replace the defined MDDB in the EIS report object with
this temporary one. A warning about replacing one MDDB
with another in an EIS object: The two MDDBs MUST
have the same structure (identical CLASS and VAR
statements). If not, the method to replace the MDDB will
fail and the report will not display.

Once this temporary MDDB is generated, the appropriate
EIS reporting object is called. A number of methods are
overridden for these objects, some to add features and
others to modify them. Besides the method to replace the
MDDB defined within the report with the temporary one,
examples of the method overrides include:

• Code to capture and track subtable usage from the
MDDB to see if users are accessing the NWAY
tables.

• Code to make an Excel spreadsheet generated from
a Multi-Dimensional Report look more like the table.

• Code to change how the _REACHTHRU_ method
operates.

Another technical challenge we had to solve involved the
Map object. A requirement for the application was to
provide the ability to view a map of the state of Maryland
showing data by county, then to drill down by county to
see the data by ZIP code. This fairly standard (for this
application) drill hierarchy exists in the other objects.

The challenge was to determine how to draw the county
maps showing each ZIP code. The data to show values
was already stored in the MDDBs, but the data to define
the ZIP code borders is not part of any of the MAPS data
sets provided with the SAS System. With a little work by
staff from both UMBC and SAS Institute, we were able to
get the data sets needed to draw these maps.

The Future

All of the work described in this paper was just to
accomplish Phase I of the application. By the time this is
published, another development phase will be well
underway. The new work will include implementing new
features to improve efficiency, add functionality, and most
of all, to include new data into one or more new Data
Marts. As with the first part of this project, it will be a joint
effort between UMBC and SAS Institute staff.

CHPDM management is fully supportive of Phase 2 and
understands the importance of the design phase.
Business rules that were difficult to define for Phase 1 will
be developed to not only deal with the Data Mart but all
analytical processes taking place within the department.
With these business rules in place, all results produced by
the department should be based on the same algorithms.

One of the new features to be implemented to improve the
speed of the application is the HOLAP extensions to the
SAS/EIS product. These methods and programs allow
more of the processing of an MDDB to be done on the
server side of a client/server application. Certain functions
within the EIS reporting objects for MDDBs can cause
large amounts of data to be passed from the server to the
client, making network traffic an issue in an application.
HOLAP forces the server to perform some functions
normally passed to the client, therefore passing much
smaller amounts of data across the network and reducing
the traffic. This in turn makes the application much faster.

Some of the new functionality being planned for the new
phase include saving information such as Medicaid
recipient lists to be used as subsetting lists for generating
temporary MDDBs and modeling some of the data to allow
‘numerator/denominator’ processing.

This processing will allow the user to build a population of
recipients within a certain group (all people within a certain
age group with a certain diagnosis, for example), then
apply that population against the total population to
determine how many recipients per thousand match that
diagnosis. This may involve implementing one of the
other features of HOLAP, the ability to build a single
MDDB from one or more other MDDBs or other data
sources.

7

The new Data Marts will include data from multiple years
worth of Medicaid claims (the Data Mart developed in the
initial phase of the project only contains one year of claims
information). Also, these new Marts will be designed with
the challenges encountered during the development of the
pilot Mart in mind.

Other new features to be added in the next phase of this
project include some new mapping options, new
customizations for the EIS reporting objects, and access
to individual modules of the SAS/ASSIST product to give
users additional analysis tools.

Conclusion

This project was a success in many ways. First of all, it
proved that three groups of people with different
backgrounds and strengths can work together with a
single goal in mind and accomplish what they set out to
accomplish. Second, that with a little patience, hard work,
and teamwork, almost any technical challenge can be
overcome. And finally and most importantly, the users
were given access to their data using a tool set that allows
them to satisfy their business needs quickly and efficiently.

Acknowledgements

SAS, SAS/EIS, SAS/MDDB Server, SAS/Warehouse
Administrator, and SAS/ASSIST are registered
trademarks or trademarks of SAS Institute Inc. in the
USA and other countries.  indicates USA
registration.

To contact the authors:

Marge Scerbo
CHPDM
University of Maryland, Baltimore County
1000 Hilltop Circle, SS Room 309
Catonsville, MD 21250
Phone: 410-455-6807
Email: scerbo@chpdm.umbc.edu

Stuart B. Levine
SAS Institute Inc.
1700 Rockville Pike
Suite 600
Rockville, MD 20852
Phone: 301-881-8840 ext. 3363
Email: sasszl@wnt.sas.com

